Treatment With Crocin Improves Cardiac Dysfunction by Normalizing Autophagy and Inhibiting Apoptosis in STZ-induced Diabetic Cardiomyopathy
Abstract
Background and aim:
The association of diabetes mellitus (DM) and poor metabolic control with high incidence of cardiovascular diseases is well established. The aim of this study was to investigate the potential cardioprotective effect of crocin (Crocus sativus L. extract) on diabetic heart dysfunction and to elucidate the mediating molecular mechanisms.
Methods and results:
Streptozotocin (STZ)-induced diabetic rats were treated with two different concentrations of crocin (10 or 20 mg/kg), while isolated cardiac myocytes exposed to 25 mM glucose, were treated with 1 or 10 μM of crocin. Treatment of STZ-diabetic rats with crocin resulted in normalization of plasma glucose levels, inhibition of cardiac hypertrophy and fibrosis, and improvement of cardiac contractile function. Heat Shock Response was enhanced. Myocardial AMPK phosphorylation was increased after treatment with crocin, resulting in normalization of autophagy marker proteins (LC3BII/LC3BI ratio, SQSTM1/p62 and Beclin-1), while the diabetes-induced myocardial apoptosis was decreased. Similar results regarding the effect of crocin on autophagy and apoptosis pathways were obtained in isolated cardiac myocytes exposed to high concentration of glucose.
Conclusion:
The results suggest that crocin improves the deteriorated cardiac function in diabetic animals by enhancing the heat shock response, inhibiting apoptosis and normalizing autophagy in cardiac myocytes. Thus, treatment with crocin may represent a novel approach for treating diabetic cardiomyopathy.
Keywords:
Apoptosis; Autophagy; Cardiac function; Crocin; Diabetes; Heat shock response.
Copyright © 2018 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.